skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hopkins, Francesca"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Over the past several decades, the annual burned area in California's Sierra Nevada mountains has increased considerably, with significant social, economic, and ecosystem impacts that provide motivation for understanding how the history of forest management influences the composition of fuels and emissions in wildfires. Here, we measured the carbon concentration and radiocarbon abundance (∆14C) of fire-emitted particulate matter from the KNP Complex Fire, which burned through several groves of giant sequoia trees in the southern Sierra Nevada mountains during California’s 2021 wildfire season. Over a 26-hour sampling period, we measured the concentration of fine airborne particulate matter (PM2.5) along with carbon monoxide (CO) and methane (CH4) dry air mole fractions using a ground-based mobile laboratory. Filter samples of PM2.5 were also collected and later analyzed for carbon concentration and ∆14C. Covariation of PM2.5, CO, and CH4 time series data confirmed that our PM2.5 samples were representative of wildfire emissions. Using a Keeling plot approach, we estimated that the mean ∆14C of PM2.5 was 111.5 ± 2.3‰ (n=12), which is considerably enriched relative to that of atmospheric carbon dioxide in the northern hemisphere in 2021 (-3.4 ± 1.4‰). By combining these ∆14C data with a steady-state one-box ecosystem model, we estimated that the mean age of fuels combusted in the KNP Complex Fire was 40 ± 6 years. This multi-decadal fuel age provides evidence for emissions from woody biomass, coarse woody debris, and larger-diameter fine fuels. The combustion of these larger-size fuel classes is consistent with independent field observations that indicate high fire intensity contributed to widespread giant sequoia mortality. With the expanded use of prescribed fires planned over the next decade in California to mitigate impacts of wildfires, our measurement approach has the potential to provide regionally-integrated estimates of the effectiveness of fuel treatment programs. 
    more » « less
  2. Fossil fuel carbon dioxide emissions (ffCO2) constitute the majority of greenhouse gas emissions and are the main determinent of global climate change. The COVID-19 pandemic caused wide-scale disruption to human activity and provided an opportunity to evaluate our capability to detect ffCO2 emission reductions. Quantifying changes in ffCO2 levels is especially challenging in cities, where climate mitigation policies are being implemented but local emissions lead to spatially and temporally complex atmospheric mixing ratios. Here, we used direct observations of on-road CO2 mixing ratios with analyses of the radiocarbon (14C) content of annual grasses collected by community scientists in Los Angeles and California, USA to assess reductions in ffCO2 emissions during the first two years of the COVID-19 pandemic. With COVID-19 mobility restrictions in place in 2020, we observed a significant reduction in ffCO2 levels across California, especially in urban centers. In Los Angeles, CO2 enhancements on freeways were 60 ± 16% lower and ffCO2 levels were 38-52% lower than in pre-pandemic years. By 2021, California's ffCO2 levels rebounded to pre-pandemic levels, albeit with substantial spatial heterogeneity related to local and regional pandemic measures. Taken together, our results indicate that a reduction in traffic emissions by ~60% (or 10-24% of Los Angeles' total ffCO2 emissions) can be robustly detected by plant 14C analysis, and pave the way for mobile- and plant-based monitoring of ffCO2 emissions in cities without CO2 monitoring infrastructure such as those in the Global South. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Abstract Wintertime episodes of high aerosol concentrations occur frequently in urban and agricultural basins and valleys worldwide. These episodes often arise following development of persistent cold-air pools (PCAPs) that limit mixing and modify chemistry. While field campaigns targeting either basin meteorology or wintertime pollution chemistry have been conducted, coupling between interconnected chemical and meteorological processes remains an insufficiently studied research area. Gaps in understanding the coupled chemical-meteorological interactions that drive high pollution events make identification of the most effective air-basin specific emission control strategies challenging. To address this, a September 2019 workshop occurred with the goal of planning a future research campaign to investigate air quality in Western U.S. basins. Approximately 120 people participated, representing 50 institutions and 5 countries. Workshop participants outlined the rationale and design for a comprehensive wintertime study that would couple atmospheric chemistry and boundary-layer and complex-terrain meteorology within western U.S. basins. Participants concluded the study should focus on two regions with contrasting aerosol chemistry: three populated valleys within Utah (Salt Lake, Utah, and Cache Valleys) and the San Joaquin Valley in California. This paper describes the scientific rationale for a campaign that will acquire chemical and meteorological datasets using airborne platforms with extensive range, coupled to surface-based measurements focusing on sampling within the near-surface boundary layer, and transport and mixing processes within this layer, with high vertical resolution at a number of representative sites. No prior wintertime basin-focused campaign has provided the breadth of observations necessary to characterize the meteorological-chemical linkages outlined here, nor to validate complex processes within coupled atmosphere-chemistry models. 
    more » « less